Showing posts with label MCGRAW-HILL. Show all posts
Showing posts with label MCGRAW-HILL. Show all posts

Sunday, March 22, 2009

Calculus 5TH Edition Schaums Outline Download ebook!

Subtitle:         Calculus

ISBN:             9780071508612 

Author:           Ayres, Frank, Mendelson, Elliott 
Publisher:        McGraw-Hill 
Subject:          Calculus 
Copyright:       2009 
Series:            Schaum's Outline Series 
Publish Date:   August 2008 
Grade Level:    College/higher education: 
Language:       English 
Pages:            534
Format:           PDF
Size:               4.05 MB

Table of Contents
Schaum's Outline of Calculus, 5ed 

1. Linear Coordinate Systems. Absolute Value. Inequalities.
2. Rectangular Coordinate Systems
3. Lines
4. Circles
5. Equations and their Graphs
6. Functions
7. Limits
8. Continuity
9. The Derivative
10. Rules for Differentiating Functions
11. Implicit Differentiation
12. Tangent and Normal Lines
13. Law of the Mean. Increasing and Decreasing Functions
14. Maximum and Minimum Values
15. Curve Sketching. Concavity. Symmetry.
16. Review of Trigonometry
17. Differentiation of Trigonometric Functions
18. Inverse Trigonometric Functions
19. Rectilinear and Circular Motion
20. Related Rates
21. Differentials. Newton's Method
22. Antiderivatives
23. The Definite Integral. Area under a Curve
24. The Fundamental Theorem of Calculus
25. The Natural Logarithm
26. Exponential and Logarithmic Functions
27. L'Hopital's Rule
28. Exponential Growth and Decay
29. Applications of Integration I: Area and Arc Length
30. Applications of Integration II: Volume
31. Techniques of Integration I: Integration by Parts
32. Techniques of Integration II: Trigonometric Integrands and Trigonometric Substitutions
33. Techniques of Integration III: Integration by Partial Fractions
34. Techniques of Integration IV: Miscellaneous Substitutions
35. Improper Integrals
36. Applications of Integration III: Area of a Surface of Revolution
37. Parametric Representation of Curves
38. Curvature
39. Plane Vectors
40. Curvilinear Motion
41. Polar Coordinates
42. Infinite Sequences
43. Infinite Series
44. Series with Positive Terms. The Integral Test. Comparison Tests
45. Alternating Series. Absolute and Conditional Convergence. The Ratio Test
46. Power Series
47. Taylor and Maclaurin Series. Taylor's Formulas with Remainder
48. Partial Derivatives
49. Total Differential. Differentiability. Chain Rules
50. Space Vectors
51. Surfaces and Curves in Space
52. Directional Derivatives. Maximum and Minimum Values.
53. Vector Differentiation and Integration
54. Double and Iterated Integrals
55. Centroids and Moments of Inertia of Plane Areas
56. Double Integration Applied to Volume under a Surface and the Area of a Curved Surface
57. Triple Integrals

58. Masses of Variable Density
59. Differential Equations of First and Second Order

Download In PDF Format HERE

Friday, March 20, 2009

Schaum's Outline of Vector Analysis - Ebook Download


Author:            Spiegel; Murray Spiegel
Publisher:        MCGRAW-HILL
ISBN:               9780070602281
Publish date:  June 1968
Format:            PDF
Size:                 15 MB


Discription:

Introducing to students the vector analysis, this title presents different kinds of equations and natural aid for forming internal pictures of physical and geometrical thoughts. It is good for students of the physical sciences and of physics, mechanics, electromagnetic theory, aerodynamics, and many other fields.

This book introduces students to vector analysis, a concise way of presenting certain kinds of equations and a natural aid for forming mental pictures of physical and geometrical ideas. Students of the physical sciences and of physics, mechanics, electromagnetic theory, aerodynamics and a number of other fields will find this a rewarding and practical treatment of vector analysis. Key points are made memorable with the hundreds of problems with step-by-step solutions, and many review questions with answers.

Table of contents:

Vectors 
Scalars 
Vector algebra 
Laws of vector algebra 
Unit vectors 
Rectangular unit vectors 
Components of a vector 
Scalar fields 
Vector fields 
The Dot and Cross Product 16 (19) 
Dot or scalar products 
Cross or vector products 
Triple products Reciprocal sets of vectors 
Vector Differentiation 35 (22) 
Ordinary derivatives of vectors 
Space curves 
Continuity and differentiability 
Differentiation formulas 
Partial derivatives of vectors 
Differentials of vectors 
Differential geometry 
Mechanics 
Gradient, Divergence and Curl 57 (25) 
The Vector differential operator del 
Gradient 
Divergence 
Curl 
Formulas involving del 
Invariance 
Vector Integration 82 (24) 
Ordinary integrals of vectors 
Line integrals 
Surface integrals 
Volume integrals 
The Divergence Theorem, Stokes' Theorem, and 106(29) 
Related Integral Theorems 
The divergence theorem of Gauss 
Stokes' theorem 
Green's theorem in the plane 
Related integral theorems 
Integral operator form for del 
Curvilinear Coordinates 135(31) 
Transformation of coordinates 
Orthogonal curvilinear coordinates 
Unit vectors in curvilinear systems 
Arc length and volume elements 
Gradient, divergence and curl 
Special orthogonal coordinate systems 
Cylindrical coordinates 
Spherical coordinates 
Parabolic cylindrical coordinates 
Paraboloidal coordinates 
Elliptic cylindrical coordinates 
Prolate spheroidal coordinates 
Oblate spheroidal coordinates 
Ellipsoidal coordinates 
Bipolar coordinates 
Tensor Analysis 166(52) 
Physical laws, Spaces of N dimensions 
Coordinate transformations 
The summation convention 
Contravariant and covariant vectors 
Contravariant, Covariant and mixed tensors 
The Kronecker delta 
Tensors of rank greater than two 
Scalars or invariants 
Tensor fields 
Symmetric and skew-symmetric tensors 
Fundamental operations with tensors 
Matrices 
Matrix algebra 
The line element and metric tensor 
Conjugate or reciprocal tensors 
Associated tensors 
Length of a vector 
Angle between vectors 
Physical components 
Christoffel's symbols 
Transformation laws of Christoffel's symbols 
Geodesics 
Covariant derivatives 
Permutation symbols and tensors 
Tensor form of gradient, divergence and curl 
The intrinsic or absolute derivative 
Relative and absolute tensors 
Index 218


Download HERE in PDF format

Blog Widget by LinkWithin